FightAging!
1-20-19

https://www.fightaging.org/archives/...nce-gathering/

The JP Morgan Healthcare conference took place in San Francisco this past week. The conference is less interesting in and of itself, but it is the spur for any number of other short gatherings of various biotech investment and business interest groups. So in the middle of last week, Jim Mellon and the other Juvenescence principals were in town to host their second annual showcase for startups working on aging, and the BioAge and Felicis Ventures folk hosted the overlapping Extending Human Lifespan event on the same day. I had to miss that second one, as I was presenting Repair Biotechnologies at the Juvenescence event to a small crowd of other entrepreneurs, angel investors, and venture capitalists of varied allegiances, and stayed for the whole event to see the other presentations.

Many of our fellow travelers associated with SENS rejuvenation research and Methuselah Foundation spheres were present to meet and greet: the SENS Research Foundation folk; much of the Oisin Biotechnologies team; Doug Ethell of Leucadia Therapeutics; Frank Schüler of Forever Healthy Foundation; a number of angel investors I've interacted with in the past while we were interested in the same companies; and many others arriving and leaving as they moved between events.

One thing that caught my eye is that the theme of diversity and new hypotheses in Alzheimer's research (or outright rebellion against the past two decades of relentless focus on clearing amyloid via immunotherapies, present it as you will) has robustly made its way to the commercial development stage. Leucadia Therapeutics were presenting their latest work on ferrets as an animal model to illustrate that the development of Alzheimer's occurs due to blocked drainage of cerebrospinal fluid though the cribriform plate. Related company Enclear Therapies was not present, but was a topic of discussion given that their founders have very similar thoughts on filtration of cerebrospinal fluid. Maxwell Biosciences principals presented their work on the LL-37 antimicrobial peptide as a test of the microbial theories of Alzheimer's disease, in which infection is provoking greater aggregation of amyloid and inflammation to accelerate other aspects of the condition. An attempt at intervention is perhaps the best way to clear up questions of causality here: do we see microbial infections in the Alzheimer's brain because they are an important cause, or because immune dysfunction in general tends to be more advanced in these patients?

A further contingent of startups at the Juvenescence event were similarly of interest for having a good shot at answering scientific questions very much faster than the academic community can, due to the influx of resources from the venture community. Elevian falls into this category, with their work on GDF11. Early work on parabiosis, joining the circulatory systems of an old and young mouse, pointed to GDF11 as a possible factor in conveying benefits to the old mouse. There is now some debate over why parabiosis works, however, casting doubt on the argument of beneficial factors in young blood. Similarly, there has been some back and forth in the research community regarding whether or not past work on GDF11 is as it appears to be, but the Elevian staff claim to have resolved the conflicts. In many cases, the best way to resolve a debate of this nature is to just forge ahead and try to build a therapy; that effort can pull in much greater funding more rapidly than the academic community can manage via the usual channels available to researchers.

Another item that caught my attention, and seems worthy of consideration, is that the infrastructure and drug discovery companies in our space of treating aging as a medical condition are the furthest ahead in terms of building out relationships with venture concerns, obtaining larger funding, and breaking ground on their larger and later projects. This may reflect the focus of groups like Juvenescence from the past couple of years, their approach to establish an initial presence in a field. Examples of this trend include In Silico Medicine and Ichor Therapeutics' portfolio company Antoxerene, both of which offer faster, cheaper discovery of small molecule drugs for any sort of use, but both of which happen to have founders very interested in aging and longevity over and above any of the myriad other uses for their technologies. In Silico Medicine in particular is clearly advancing by leaps and bounds in Asia as they gather support from the high-end venture groups there.

(I'll confess that I've never found the development of lower level biotechnological infrastructure all that interesting as a topic. Obviously it is vital, and acceleration of technological progress is achieved by making common tasks easier, faster, and cheaper. Someone has to do it, invest in it, and focus on it, but that someone will never be me. I am far more interested in specific implementations of rejuvenation therapies, the development groups who might end up using the infrastructure to build a given treatment).

San Francisco is ever a hub of connections for the venture and technology spaces. It is the base of operations and home for a sizable number of high net worth individuals, agents for other high net worth individuals, fund partners deploying sizable amounts of capital, successful founders turned angel investors, successful angel investors turned founders - all rubbing shoulders, bumping into one another at the supermarket, and two degrees of separation removed at most. It is through this very connected network that interest in the biotechnologies of rejuvenation has been spreading these past fifteen years, pushed along by the presence of the SENS Research Foundation in the Bay Area. This occurred slowly at first, given that the focus was initially philanthropic funding of research rather than startups, but much more rapidly these past few years now that the first rejuvenation biotechnology startups are arriving on the scene.

At a small gathering after the Juvenescence event, those attending included an older AI-focused entrepreneur-turned-investor who has a growing interest in biotechnology, and a recently successful young founder from the technology space who is now taking life science classes to get up to speed on what he considers to be his next area of interest. The next day I met with an angel investor who attended the Juvenescence event, and who is cheerfully incorporating biotech companies into his previously tech-company-heavy portfolio. This dynamic is similarly reflected in venture firms such as Y Combinator, Felicis Ventures, and (closer to our community) Kizoo Technology Ventures led by Michael Greve, among others. They are transitioning into biotechnology, and the interest in doing something about aging is a driving motivation for many involved. For others, it is the realization that successful rejuvenation therapies will lead to a market so enormous as to make a pittance of near everything that has come before. Self-interest is a machine to be harnessed in these matters: while fundamental research is very cheap, later commercialization and distribution of medical therapies to millions of patients is enormously expensive. We need the deep pockets to enter this space, and to pull in all of their allies and other interested parties, if we are to see a reasonable rate of progress in moving rejuvenation therapies from lab to clinic.

The only other alternative is some form of major, lasting revolution in the regulatory environment, as that is the dominant cause of cost and delay. Therapies could be brought to market just as safely as they are today at a fraction of the present cost; the majority of cost and time imposed by the FDA, EMA, and the like is entirely unnecessary, some of it the debris of regulatory capture used by larger pharmaceutical entities to suppress competition, some of it the consequences of bureaucrats going to any lengths to avoid negative press, even by the means of preventing most new technologies from ever being approved.
I'm certainly in favor of great upheaval in the development of medical therapies, but tearing down the present edifice is a vast project, and arguably one that will be much less costly and difficult to undertake given the existence of the first rejuvenation therapies and the public demand for more.

A final thought on investors and the science of rejuvenation: most of the newcomers are still finding their way to an understanding of the science in this space. They cannot yet tell the difference between projects likely to produce significant gains in human life span, those based on repair of the damage that causes aging, and those that cannot in principle produce large gains, those based on, say, upregulation of stress responses, such as mTOR inhibitors. Investors are guided by potential for financial gains, but that metric is not in fact a great way to tell the difference between better and worse approaches to aging. The typical competently run medical biotechnology company is acquired or goes public before the final determination of effectiveness of their programs; perhaps somewhere just after the first human trial, or even prior to that when the market is hot. Companies can do this after showing marginal benefits, or even just potential for marginal benefits, with a therapy that will never produce large or reliable benefits in larger patient populations, and yet still realize large gains for the early investors. So this is a challenge, and an opportunity for patient advocates to make a difference - to help guide those people chasing gains into obtaining those gains by backing better rather than worse technologies.